
pickle
Pythonic object serialization

Atul Varma

The Chicago Python Users Group

January 10, 2008

What is serialization?
It’s the process of saving an object onto a
storage medium (such as a file) or to transmit it
across a network in binary form.

A simple example...
>>> aList = [1]

>>> obj = (aList, aList)

>>> import pickle

>>> pickle.dumps(obj)

‘((lp0\nI1\nag0\ntp1\n.’

>>> pickle.loads(‘((lp0\nI1\nag0\ntp1\n.’)

([1], [1])

Works with class instances!
>>> class Player(object):

... def __init__(self, name):

... print “Player %s created.” % name

... self.name = name

>>> player = Player(“Argon”)

Player Argon created.

>>> pickle.dumps(player)

‘ccopy_reg\n_reconstructor\np0\n(c__main__\nPlayer...’

>>> clonedPlayer = pickle.loads(_)

>>> clonedPlayer.name

‘Argon’

pickle isn’t secure.
“no sufficient security analysis has been done to
guarantee this and there isn't a use case that
warrants the expense of such an analysis.”

from pickletools.py

pickle is cross-platform.
Protocol version 0 is text-only, versions 1 and 2
are platform-independent and binary.

Unanswered questions...

Unanswered questions...

Why isn’t the Player constructor called?

Unanswered questions...

Why isn’t the Player constructor called?

What if I add a new attribute to the Player
class, or change an instance method?

Unanswered questions...

Why isn’t the Player constructor called?

What if I add a new attribute to the Player
class, or change an instance method?

What if I move the Player class to a different
file?

Unanswered questions...

Why isn’t the Player constructor called?

What if I add a new attribute to the Player
class, or change an instance method?

What if I move the Player class to a different
file?

What if there’s things in a Player instance that I
don’t want serialized, like a socket?

What is a pickle, really?
“A pickle is a program for a virtual pickle
machine (PM)... It's a sequence of opcodes,
interpreted by the PM, building an arbitrarily
complex Python object.”

from pickletools.py

Pickle Machine properties

Pickle Machine properties

Two data areas: the stack and the memo.

Pickle Machine properties

Two data areas: the stack and the memo.

No looping, testing, or conditional instructions.

Pickle Machine properties

Two data areas: the stack and the memo.

No looping, testing, or conditional instructions.

No arithmetic instructions.

Pickle Machine properties

Two data areas: the stack and the memo.

No looping, testing, or conditional instructions.

No arithmetic instructions.

No function calls.

Pickle Machine properties

Two data areas: the stack and the memo.

No looping, testing, or conditional instructions.

No arithmetic instructions.

No function calls.

Opcodes are executed from first to last until a
STOP instruction is reached.

Disassembling pickles
>>> import pickletools

>>> # Let’s disassemble (aList, aList), where aList = [1].

>>> pickletools.dis(‘((lp0\nI1\nag0\ntp1\n.’)

 0: (MARK

 1: (MARK

 2: l LIST (MARK at 1)

 3: p PUT 0

 6: I INT 1

 9: a APPEND

 10: g GET 0

 13: t TUPLE (MARK at 0)

 14: p PUT 1

 17: . STOP

highest protocol among opcodes = 0

More disassembly...
>>> # Let’s disassemble our Argon player.

>>> pickletools.dis(‘ccopy_reg\n_reconstructor...’)

 0: c GLOBAL 'copy_reg _reconstructor'

 25: p PUT 0

 28: (MARK

 29: c GLOBAL '__main__ Player'

 46: p PUT 1

 49: c GLOBAL '__builtin__ object'

 69: p PUT 2

 72: N NONE

 73: t TUPLE (MARK at 28)

 74: p PUT 3

 77: R REDUCE

 78: p PUT 4

That was all shorthand for...
>>> copy_reg._reconstructor(__main__.Player,

... __builtin__.object,

... None)

<__main__.Player object at 0x41f170>

That was all shorthand for...
>>> copy_reg._reconstructor(__main__.Player,

... __builtin__.object,

... None)

<__main__.Player object at 0x41f170>

What’s this reconstructor?

That was all shorthand for...
>>> copy_reg._reconstructor(__main__.Player,

... __builtin__.object,

... None)

<__main__.Player object at 0x41f170>

What’s this reconstructor?
def _reconstructor(cls, base, state):

 if base is object:

 obj = object.__new__(cls)

 else:

 obj = base.__new__(cls, state)

 base.__init__(obj, state)

 return obj

Zomg, a half-born object!

Build our instance attributes!
 81: (MARK

 82: d DICT (MARK at 81)

 83: p PUT 5

 86: S STRING 'name'

 94: p PUT 6

 97: S STRING 'Argon'

 106: p PUT 7

 109: s SETITEM

 110: b BUILD

 111: . STOP

That was shorthand for...
>>> obj.__dict__.update({“name” : “Argon”})

Pickling customization

Pickling customization

__getstate__(), __setstate__()

Pickling customization

__getstate__(), __setstate__()

__getnewargs__()

Pickling customization

__getstate__(), __setstate__()

__getnewargs__()

Subclass picklers and unpicklers

Pickling customization

__getstate__(), __setstate__()

__getnewargs__()

Subclass picklers and unpicklers

Override an unpickler’s find_class()
method

Where to go next...

Where to go next...

Look at the Python documentation for pickle
and cPickle.

Where to go next...

Look at the Python documentation for pickle
and cPickle.

For more information on the Pickle Machine
internals, see the source code for
pickletools.py.

Where to go next...

Look at the Python documentation for pickle
and cPickle.

For more information on the Pickle Machine
internals, see the source code for
pickletools.py.

To learn more about the specifics of class
instantiation and other Python internals, see
David Beazley’s Python Essential Reference.

