

PyPy
So what is this, exactly?

Atul Varma
The Chicago Python Users Group

April 12, 2007

a common translation and support framework for
producing implementations of dynamic languages,
emphasising a clean separation between language
specification and implementation aspects.

PyPy is ...

http://codespeak.net/pypy/dist/pypy/doc/architecture.html#mission-statement

http://www.flickr.com/photos/kimhartig/127166291/

... implementations of dynamic languages, ...

Think Python
Javascript
Ruby
Prolog
Lisp
Lua
HyperTalk

Think CPython
Jython
IronPython
JRuby
Cardinal

... implementations of dynamic languages, ...

... between language specification and ...

Think Python 1.0
Python 2.5
Python 3000

... between language specification and ...

Syntax
(structural rules)

Semantics
(what statements and expressions in

the language actually mean)

... specification and implementation aspects.

Think Target platform/language
(x86, .NET, Parrot, LLVM, Javascript)

Just-in-time compilation

... specification and implementation aspects.

Think Concurrency model
(GIL-based, non-GIL-based)

Memory management
(mark-and-sweep GC, reference
 counting GC)

... specification and implementation aspects.
In CPython and
other hand-
written
interpreters,
these are things
that are tightly
interwoven into
the code.

Light blue
highlight
indicates
reference-
counting code.

Light green
highlight
indicates GIL
manipulation
code.

from posixmodule.c

... specification and implementation aspects.

Think Stacklessness

It took Christian Tismer about 6 months of
work to create Stackless Python as a series of
CPython patches.

It took a couple of days and about 300 lines of
code to implement the same thing as a
“localized translation aspect” in PyPy.

so, what is
“a common translation
 and support framework?”

Basically, it's something that allows
you to do things like:

Take any code written in a restricted
subset of Python and translate it to

any language or platform.

(e.g., Javascript, C, .NET, JVM, LLVM.)

Create a custom dynamic language
interpreter implemented in any
language or platform, with your

choice of language and
implementation features.

(e.g., a Python interpreter implemented in C
that supports JIT compilation and

Stacklessness.)

Easily add new language or
implementation features to an

existing dynamic language
interpreter.

(e.g., create a Python interpreter without a GIL,
or implement object tainting.)

So how does it work?

>>> def spam(a, b, doAdd):
... if doAdd:
... return a + b
... else:
... return a
>>> spam.func_code.co_varnames
('a', 'b', 'doAdd')
>>> import dis # This is a standard Python library module.
>>> dis.dis(spam)

 2 0 LOAD_FAST 2 (doAdd)
 3 JUMP_IF_FALSE 12 (to 18)
 6 POP_TOP
 3 7 LOAD_FAST 0 (a)
 10 LOAD_FAST 1 (b)
 13 BINARY_ADD
 14 RETURN_VALUE
 15 JUMP_FORWARD 5 (to 23)
 >> 18 POP_TOP
 5 19 LOAD_FAST 0 (a)
 22 RETURN_VALUE
 >> 23 LOAD_CONST 0 (None)
 26 RETURN_VALUE

Let's disassemble some Python code.

t = Translation(spam); t.view()

t = Translation(spam); t.annotate([int,int,bool]); t.view()

